a2 United States Patent

US009436572B2

10) Patent No.: US 9,436,572 B2

Choi et al. 45) Date of Patent: Sep. 6, 2016
(54) METHOD AND SYSTEM TO DETECT A (56) References Cited
CACHED WEB PAGE
U.S. PATENT DOCUMENTS
(71) Applicant: eBay Inc., San Jose, CA (US) 5821927 A 10/1998 Gong
*
(72) Tnventors: g.reg()iy Choi, Sgn J?se, C é‘ A([(JS%’) 5.924,116 A 7/1999 Aggarwal ... G06$0173]/E3107??§
iego Lagunas, San Jose, ; .
Sathishwar Pottavathini, Dublin, CA (Continued)
(US) FOREIGN PATENT DOCUMENTS
(73) Assignee: eBay Inc., San Jose, CA (US) WO WO-2006033850 A2 3/2006
. . o . WO WO-2006033850 A3 3/2006
(*) Notice: Subject to any disclaimer, the term of this Continued
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21) Appl. No.: 14/293,925 Davis et al., Formal Models for Web Navigation with Session
Control and Browser Cache, 2004, ICFEM 2004, LNCS 3308, pp.
(22) Filed: Jun. 2, 2014 46-60.%
(65) Prior Publication Data (Continued)
US 2014/0289317 Al Sep. 25, 2014 Primary Examiner — Peter Shaw
Related U.S. Application Data (74) Attorney, Agent, or Firm — Schwegman, Lundberg &
Woessner, P.A.
(63) Continuation of application No. 12/176,253, filed on
Jul. 18, 2008, now Pat. No. 8,745,164. (57) ABSTRACT
(60) Provisional application No. 60/950,774, filed on Jul. A method and system to determine whether a web page has
19, 2007. been cached is provided. An example system comprises a
cookie generator, a cookie distributor, and a cookie evalu-
(31) Int. Cl. ator. The cookie distributor may be configured to provide the
gzgi 5;;;3 (388281) code to a client system, in response to a request for web
.(0D) content from the client system. A value of the code to be
(Continued) updated at the client system in response to the client system
(52) US.CL initiating a request for the web content. The cookie evaluator
CPC ... GOGF 11/3037 (2013.01); GO6F 12/0815 may be configured to compare a value of the code to the
(2013.01); GOGF 17/30902 (2013.01); HO4L default value. The cached status detector may be configured
67/2842 (2013.01) to use a result of the comparing to determine a cached status
(58) Field of Classification Search of the web content, the cached status to indicate whether the

CPC .ot HO4L 67/2842
USPC ittt 709/203
See application file for complete search history.

web content has been cached by the client system.

20 Claims, 4 Drawing Sheets

200

r

210
COOCKIE GENERATOR
220
z—

COOKIE
DISTRIBUTOR

230
PAGE LOADED STATUS |
DETECTOR

o 240

COOKIE
EVALUATOR

WEB PAGE REQUEST 260
DETECTOR

2
UPDATE

260
RESPONSE GENERATOR r

MODULE

US 9,436,572 B2
Page 2

(51) Imt.CL
GO6F 17/30 (2006.01)
GO6F 12/08 (2016.01)
HO4L 29/08 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,094,662 A 7/2000 Hawes

6,219,676 Bl 4/2001 Reiner

6,314,463 B1 11/2001 Abbott et al.

6,366,947 Bl 4/2002 Kavner

6,385,701 B1* 5/2002 Krein GOGF 12/0815
707/999.008

6,507,854 Bl 1/2003 Dunsmoir et al.

6,625,647 Bl 9/2003 Barrick, Ir. et al.

6,799,214 Bl 9/2004 Li

6,931,439 Bl 8/2005 Hanmann et al.

7,047,281 Bl 5/2006 Kausik

7,269,784 Bl 9/2007 Kasriel et al.

7,330,887 Bl 2/2008 Dharmadhikari

7,426,534 B2 9/2008 Challenger et al.

7,509,404 B2 3/2009 Agrawal et al.

8,745,164 B2 6/2014 Choi et al.

2001/0021962 Al* 9/2001 Lee .ovvovvivvvieveeenin 711/118
2002/0007393 Al* 1/2002 Hamel 709/203
2002/0007413 Al 1/2002 Garcia-Luna-Aceves
etal. ...
7/2002 Russell et al.
4/2003 Jenny et al.
5/2003 McBrearty et al.
6/2003 Corcoran
9/2003 Chess et al.
12/2004 Donovan et al.
2/2005 Bialkowski et al.
3/2006 Libby
5/2006 Kelly et al.
5/2006 DeVitis et al.
7/2006 Ding et al.
6/2007 Luniewski et al.
6/2007 Mansour et al.
6/2008 Zimowski

*

709/229

2002/0099818 Al
2003/0065743 Al
2003/0101234 Al
2003/0120752 Al
2003/0182357 Al
2004/0249709 Al
2005/0044321 Al
2006/0064467 Al
2006/0101341 Al
2006/0106807 Al
2006/0149807 Al
2007/0143344 Al
2007/0150822 Al
2008/0155056 Al

FOREIGN PATENT DOCUMENTS

WO WO-2006055769 A2
WO WO0O-2009014659 Al

5/2006
1/2009

OTHER PUBLICATIONS

“U.S. Appl. No. 12/176,253 , Appeal Brief filed Oct. 9, 20127, 18
pgs.

“U.S. Appl. No. 12/176,253 , Response filed Jan. 11, 2012 to Non
Final Office Action mailed Oct. 11, 20117, 11 pgs.

“U.S. Appl. No. 12/176,253 , Response filed May 7, 2013 to Non
Final Office Action mailed Jan. 7, 2013”, 11 pgs.

“U.S. Appl. No. 12/176,253 , Response filed Aug. 9, 2012 to Final
Office Action mailed Apr. 9, 20127, 12 pgs.

“U.S. Appl. No. 12/176,253 , Response filed Sep. 25, 2012 to Final
Office Action mailed Apr. 9, 20127, 12 pgs.

“U.S. Appl. No. 12/176,253 Non-Final Office Action mailed Sep.
24, 20107, 13 pgs.

“U.S. Appl. No. 12/176,253, Advisory Action mailed Jul. 31,2013,
3 pgs.

“U.S. Appl. No. 12/176,253, Advisory Action mailed Aug. 23,
20127, 3 pgs.

“U.S. Appl. No. 12/176,253, Appeal Brief filed Oct. 22, 20137, 16
pgs.

“U.S. Appl. No. 12/176,253, Final Office Action mailed Apr. 9,
2012, 15 pgs.

“U.S. Appl. No. 12/176,253, Final Office Action mailed Apr. 19,
20117, 14 pgs.

“U.S. Appl. No. 12/176,253, Final Office Action mailed May 22,
2013, 12 pgs.

“U.S. Appl. No. 12/176,253, Non Final Office Action mailed Jan. 7,
2013, 13 pgs.

“U.S. Appl. No. 12/176,253, Non Final Office Action mailed Oct.
11, 2011”, 14 pgs.

“U.S. Appl. No. 12/176,253, Notice of Allowance mailed Jan. 27,
2014, 14 pgs.

“U.S. Appl. No. 12/176,253, Response filed Jan. 24, 2011 to
Non-Final Office Action mailed Sep. 24, 20107, 10 pgs.

“U.S. Appl. No. 12/176,253, Response filed Jul. 19, 2011 to Final
Office Action mailed Apr. 19, 20117, 10 pgs.

“U.S. Appl. No. 12/176,253, Response filed Jul. 22, 2013 to Final
Office Action mailed May 22, 2013”, 13 pgs.

“International Application Serial No. PCT/US2008/008825, Search
Report mailed Nov. 14, 20087, 4 pgs.

“International Application Serial No. PCT/US2008/008825, Written
Opinion mailed Nov. 14, 2008.”, 4 pgs.

“WebPage Size Calculator 1.0”, [Online]. Retrieved from the Inter-
net: <URL: http://www.topshareware.com/WebPage-Size-Calcula-
tor-download-51331.htm>, (Apr. 9, 2007), 2 pgs.

* cited by examiner

U.S. Patent Sep. 6, 2016 Sheet 1 of 4 US 9,436,572 B2

100

CLIENT SYSTEM
_— 112

CLIENT APPLICATION

— o e e e w—— e —— e m— —

|
—
|
: WEB PAGE CACHE STATUS | 429
DETECTOR
| -
L
T_: |
e e e o — s — s —— | f 120
130
SERVER SYSTEM

FIG. 1

U.S. Patent Sep. 6, 2016 Sheet 2 of 4 US 9,436,572 B2

200

— 210
COOKIE GENERATOR
— 220
COOKIE 230
DISTRIBUTOR PAGE LOADED STATUS |/~
DETECTOR
240
COOKIE WEB PAGE REQUEST |~ 250
EVALUATOR DETECTOR
— 270 /—260
RESPONSE GENERATOR
UPDATE
MODULE

FIG. 2

U.S. Patent Sep. 6, 2016 Sheet 3 of 4 US 9,436,572 B2

300

‘,/"

RECEIVE A REQUEST FOR WEB CONTENT FROM A CLIENT g 310
APPLICATION

y

320
CREATE A COOKIE AND SET IT TO A DEFAULT VALUE

I_+

SEND A RESPONSE TO THE CLIENT TOGETHER WITH THE ~ 330
COOKIE, THE COOKIE TO BE MODIFIED BY THE CLIENT EACH
TIME A REQUEST FOR A WEB PAGE IS INITIATED AT THE CLIENT

§

— 340
ACCESS THE COOKIE AT THE CLIENT

!

COMPARE, AT THE CLIENT, THE VALUE OF THE COOKIE WITH |~ 350
THE DEFAULT VALUE

OOKIE = DEFAULT VALU
?

YES NO

370
DETERMINE THAT THE WEB DETERMINE THAT THE WEB [~ 380
PAGE HAS NOT BEEN PAGE HAS BEEN CACHED AT
CACHED AT THE SERVER THE SERVER

FIG. 3

U.S. Patent Sep. 6, 2016 Sheet 4 of 4 US 9,436,572 B2
V/ 400
PROCESSOR
VIDEO L 410
402 < g I > DISPLAY
424 —|INSTRUCTIONS
MAIN MEMORY ALPHA-NUMERIC
404 < > « > INPUT DEVICE [~ 412
424 ——INSTRUCTIONS
408 —
STATIC CURSOR
406 «———» BUS|€——> CONTROL |—414
MEMORY SEVICE
DRIVE UNIT
COMPUTER- |} 416
NETWORK READABLE
420 — INTERFACE [€——> i MEDIUM | 422
DEVICE INSTRUCTIONST424
SIGNAL
426 «——>»| GENERATION |—418
DEVICE

NS

FIGURE 4

US 9,436,572 B2

1
METHOD AND SYSTEM TO DETECT A
CACHED WEB PAGE

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/176,253 filed on Aug. 11, 2008, and is
related to and hereby claims the priority benefit of U.S.
Provisional Patent Application No. 60/950,774 filed Jul. 19,
2007, which applications are incorporated herein by refer-
ence in their entirety.

TECHNICAL FIELD

This application relates to a method and system to detect
whether a web page has been cached.

BACKGROUND

In the context of web application development and test-
ing, it may be desirable to determine how fast can a web
page be loaded in response to a user’s request. For example
a method for testing web-based applications may include
measuring the response time of one or more web pages.
Specifically, after the loading of a web page is initiated, an
event is received indicating preparation to navigate to the
web page and a timer mechanism is started. Another event
is received indicating that the web page has completed
loading and the timer mechanism is stopped and the elapsed
time for the web page to load is determined by accessing the
timer readings. This method does not distinguish between
loading a web page for the first time and loading a web page
that was previously cached at the client system associated
with the requesting user. A web page sent from the server
computer (server) typically behaves in the same manner as
a cached web page does.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the present invention are illustrated by
way of example and not limitation in the figures of the
accompanying drawings, in which like references indicate
similar elements and in which:

FIG. 1is a block diagram showing a network environment
within which a method and system to detect whether a web
page has been cached may be implemented;

FIG. 2 is a block diagram illustrating a system to detect
whether a web page has been cached, in accordance with an
example embodiment;

FIG. 3 is a flow chart illustrating a method to detect
whether a web page has been cached, in accordance with an
example embodiment; and

FIG. 4 illustrates a diagrammatic representation of an
example machine in the form of a computer system within
which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed.

DETAILED DESCRIPTION

A method and system to detect whether a web page has
been cached is described. In the following description, for
purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of an
embodiment of the present invention. It will be evident,
however, to one skilled in the art that the present invention
may be practiced without these specific details.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one example scenario, in order to evaluate network
latency, an approach may be pursued where the network
latency is reflected in a value associated with the time
duration it takes for a web page or any web content to load
in response to a request. Example operations that may be
utilized to perform this task are listed below.

1. Upon request, take the current time of the request (t1), and
insert this time stamp as apart of the generated web page.

2. On the browser, take a time stamp at the beginning of the
rendering of the web page (cl), and at the end of the
rendering of the web page (c2).

3. After the page loads, send to the server, e.g., through an
image tag, the values of tl and (c2-cl).

4. On the server, record the new current time (t2) and
subtract the (12) from (t1) to get the end to end time. Then
perform a calculation as follows (t2-t1)-(c2-c1), which
reflects network latency.

The approach described above may be beneficial in cases
of normal web page execution. When a page that is being
served is a cached web page, (e.g., the web page is being
served in response to a user activating the “back” control
button on the browser), t1 represents the cached t1 time. This
would affect the result in the end to end result calculation.

In order to determine where a page that has been loaded
is a cached web page, an approached has been provided that
uses web cookies, which is described below. Hypertext
Transfer Protocol (HTTP) cookies, referred to as web cook-
ies or merely cookies, are server generated identifiers stored
on the computer of the person browsing the web, which are
sent to the server with each request. In one example embodi-
ment, a specified cookie (e.g., a code) may be set on the
server to a default value for every request to access a
particular web page. On the client, for every request to
access the web page, the default value of the specified
cookie is being modified. On the client, if the read cookie
value is different from the default value stored on the server,
it is concluded that the web page never hit the server, and
therefore has been cached. Another way to describe this
approach is as follows.

On the server for every request, we set a specified cookie
to its default value and on the client we modify this value.
On the client, if the read cookie value is not the default
value, we know the page never hit the server, and therefore
has been cached.

In one example embodiment, the method and system to
determine whether a web page has been cached may be
utilized as described below. Suppose an advertisement from
a 3rd party is served up on a web given page. For every
request for the web page, a unique identifier (e.g., generated
on the client) may be added to the query string of the call in
order to ensure that the advertisement call (ad request) is not
cached. The result is that, even on cached web pages, the
new advertisement call would have a new identifier, making
it appear as if a new request has been made. which affects
metrics. With the above solution, in one example embodi-
ment, the identifier may be saved in the cookie. New
requests would wipe out this value. If it is determined that
this value is present, the cached identifier may be used with
the ad request so that the server side could identify which
calls are new and which calls are cached.

Example system to detect whether a web page has been
cached may be described with reference to a network
environment 100 illustrated in FIG. 1. The network envi-
ronment 100 may include a client system (or client) 110 and
a server system (or server) 120. The client system 110 and
the server system 120 may be in communications with each
other via a network 130. The communications network 130

US 9,436,572 B2

3

may be a public network (e.g., the Internet, a wireless
network, a public switched telephone network (PSTN), etc.)
or a private network (e.g., LAN, WAN, Intranet, etc.). Also
shown in FIG. 1 is a web page cache status detector 122. The
web page cache status detector 122 may reside at the server
system 120, at the client system 110, or be distributed
between the server system 120 and the client system 110.
The client system 110 is shown to host a client application
(e.g., a web browser application) 112. The web page cache
status detector 122 may be utilized to determine whether a
web page that is a subject of information being gathered at
the server system 120 has been cached by the client system
110. Example embodiment of a system to detect whether a
web page has been cached may be described with reference
to FIG. 2.

FIG. 2 is a block diagram illustrating a system 200 to
determine whether a web page has been cached, in an
example embodiment of the web page cache status detector
122 shown in FIG. 2. The system 200 comprises a cookie
generator 210 to generate HTML cookies, the cookie dis-
tributor 220 to store cookies at one or more client systems,
and a so-called page loaded status detector 230 that deter-
mines whether a web page has been loaded at the client, and
a cookie evaluator 240 to use cookies to determine whether
a web page that has been loaded at the client was loaded
from the server or from the client’s cache. The system 200
further comprises a web page request detector 250 to receive
a request for a web page from a client, and a response
generator 260 to provide the requested web page to the client
together with an instruction to update the value of the cookie
stored at the client to the default value. In some embodi-
ments, a default value of the cookie may be updated by an
update module 270. Example operations performed by the
web page cache status detector 122 may be discussed with
reference to FIG. 3

FIG. 3 is a flow chart of a method 300 to determine
whether a web page has been cached, according to one
example embodiment. The method 300 may be performed
by processing logic that may comprise hardware (e.g.,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (such as run on a general purpose computer system or
a dedicated machine), or a combination of both. In one
example embodiment, the processing logic resides at the
server system 140 of FIG. 1 and, specifically, at the system
200 shown in FIG. 2.

As shown in FIG. 3, the method 300 commences at
operation 310, where the web page request detector 250 of
FIG. 2 received a request for web content from a client
application. At operation 320, the cookie generator 210 of
FIG. 2 creates a cookie at a server system and sets the cookie
to a default value. The method 300 may utilize the cookie
distributor 220 of FIG. 2 and the response generator 260 of
FIG. 2 send the response to the request for the web content
and to store the cookie at the client system, at operation 330.
The stored cookie is to be modified at the client system each
time a request for a web page is initiated at the client. There
are numerous ways in which the value of the cookie can be
modified. For example, the value may be incrementally
increased, decreased, or set to a randomly generated value.

At operation 340, the cookie is accessed at the client
system. At operation 350, the cookie evaluator 240 of FIG.
2, compares the value of the cookie received with the
response to the request for the web content. If it is deter-
mined, at operation 380, that the two values match, the
method 300 determines, at operation 370, that the web page
has not been cached. Such determination may be made
because, as described above, while each time a request for

15

20

25

35

40

45

4

the web page is initiated, the value of the cookie at the client
is updated, each time the web page is provided to the client
from the server, the value of the cookie at the client is
updated to a predetermined default value. If it is determined,
at operation 360, that the two values are distinct from each
other, the method 300 determines, at operation 380, that the
web page has been cached, because it indicates that while
the web page has been loaded, the client did not receive an
instruction to update the value of the cookie.

FIG. 4 shows a diagrammatic representation of machine
in the example form of a computer system 400 within which
a set of instructions, for causing the machine to perform any
one or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine operates
as a standalone device or may be connected (e.g., net-
worked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server or a client
machine in server-client network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a portable music player (e.g., a
portable hard drive audio device such as an MP3 player), a
web appliance, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequen-
tial or otherwise) that specify actions to be taken by that
machine. Further, while only a single machine is illustrated,
the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein.

The example computer system 400 includes a processor
402 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU) or both), a main memory 404 and a
static memory 406, which communicate with each other via
a bus 408. The computer system 400 may further include a
video display unit 440 (e.g., a liquid crystal display (LCD)
or a cathode ray tube (CRT)). The computer system 400 also
includes an alphanumeric input device 442 (e.g., a key-
board), a user interface (UI) navigation device 444 (e.g., a
mouse), a disk drive unit 446, a signal generation device 448
(e.g., a speaker) and a network interface device 420.

The disk drive unit 446 includes a machine-readable
medium 422 on which is stored one or more sets of instruc-
tions and data structures (e.g., software 424) embodying or
utilized by any one or more of the methodologies or func-
tions described herein. The software 424 may also reside,
completely or at least partially, within the main memory 404
and/or within the processor 402 during execution thereof by
the computer system 400, the main memory 404 and the
processor 402 also constituting machine-readable media.

The software 424 may further be transmitted or received
over a network 426 via the network interface device 420
utilizing any one of a number of well-known transfer
protocols (e.g., HTTP).

While the machine-readable medium 422 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing, encoding or carrying
a set of instructions for execution by the machine and that
cause the machine to perform any one or more of the
methodologies of the present invention, or that is capable of
storing, encoding or carrying data structures utilized by or

US 9,436,572 B2

5

associated with such a set of instructions. The term
“machine-readable medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, optical
and magnetic media, and carrier wave signals. Such medium
may also include, without limitation, hard disks, floppy
disks, flash memory cards, digital video disks, random
access memory (RAMs), read only memory (ROMs), and
the like.

The embodiments described herein may be implemented
in an operating environment comprising software installed
on a computer, in hardware, or in a combination of software
and hardware.

Although embodiments have been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A computer-implemented system comprising:

one or more processors provided at a server computer
system,

a web page request detector, implemented using the one
or more processors, to receive a request for web content
and a client code from a client application executing at
a client system, the client code includes an identifier
associated with the requested web content;

a response generator, implemented using the one or more
processors, to provide the web content to the client
system, in response to the request from the client
application, together with a request to set the client
code at the client system to an uncached value;

an evaluator, implemented using the one or more proces-
sors, to compare the client code to the uncached value
in response to detecting that the web content has been
loaded at the client system; and

a cached status detector, implemented using the one or
more processors, to determine that the web content has
been cached by the client system, based on determining
that the client code is distinct from the uncached value.

2. The system of claim 1, wherein: the web content
includes third party content associated with the identifier;
the request to set the client code to the uncached value
includes setting the client code to the identifier;

the evaluator comparing the client code to the uncached
value includes comparing the client code to the iden-
tifier in response to receiving, at the server computer
system, a request for the third party content and the
identifier; and

the cached status detector determining that the web con-
tent has been cached includes determining whether the
request for the third party content is a request for new
content based on determining that the client code is
distinct from the identifier.

3. The system of claim 2, wherein the cached status
detector is to determine that the request for the third party
content is a new request based on the result of comparing of
the value of the identifier stored in the client code at the
client system and a previously stored third party content
identifier being a match.

4. The system of claim 2, wherein the cached status
detector is to determine that the request for the third party
content is not a new request based on the result of comparing
of the value of the identifier stored in the client code at the
client system and a previously stored third party content
identifier being a non-match.

10

15

20

25

30

35

40

45

50

55

60

65

6

5. The system of claim 2, wherein the third party content
is an advertisement.

6. The system of claim 1, wherein the client code is to be
modified at the client system in response to the client system
initiating a request for the web content.

7. The system of claim 1, wherein the cached status
detector is to determine that the web content has not been
cached by the client system, based on determining that the
value of the client code is the same as the uncached value.

8. The system of claim 1, comprising a code generator,
implemented using one or more processors, to set a code to
the uncached value at a server system.

9. The system of claim 1, comprising a code distributor,
implemented using one or more processors, to provide the
code to a client system as the client code.

10. The system of claim 1, wherein the web content is a
web page.

11. A method comprising operations performed at a server
computer system:

receiving a request for web content and a client code from

a client application executing at a client system, the
client code includes an identifier associated with the
requested web content;

providing the web content to the client system, in

response to the request from the client application,
together with a request to set the client code at the client
system to an uncached value;

comparing the client code to the uncached value in

response to detecting that the web content has been
loaded at the client system; and

determining, using one or more processors, that the web

content has been cached by the client system, based on
determining that the client code is distinct from the
uncached value.

12. The method of claim 11, wherein: the web content
includes third party content associated with the identifier;
the request to set the client code to the uncached value
includes setting the client code to the identifier; the com-
paring the client code to the uncached value includes com-
paring the client code to the identifier in response to receiv-
ing, at the server system, a request for the third party content
and the identifier; and the determining that the web content
has been cached includes determining whether the request
for the third party content is a request for new content based
on determining that the client code is distinct from the
identifier.

13. The method of claim 12, wherein the determining that
the request for the third party content is a new request is
based on the result of comparing of the value of the identifier
stored in the client code at the client system and a previously
stored third party content identifier being a match.

14. The method of claim 12, wherein the determining that
the request for the third party content is not a new request
based on the result of comparing of the value of the identifier
stored in the client code at the client system and a previously
stored third party content identifier being a non-match.

15. The method of claim 12, wherein the third party
content is an advertisement.

16. The method of claim 11, comprising modifying the
value of the client code in response to the client system
initiating a request for the web content.

17. The method of claim 11; wherein the determining that
the web content has not been cached by the client system,
based on determining that the value of the client code is the
same as the uncached value.

18. The method of claim 11, comprising setting a code to
the uncached value at a server system.

US 9,436,572 B2
7

19. The method of claim 11, comprising providing the
code to a client system as the client code.

20. A machine-readable non-transitory storage medium
having instruction data executable by a machine to cause the
machine to perform operations comprising: 5

receiving a request for web content and a client code from

a client application executing at a client system; the
client code includes an identifier associated with the
requested web content;

providing the web content to the client system, in 10

response to the request from the silent application;
together with a request to set the client code at the spent
system to an uncached value;

comparing, at the server computer system; a value of the

client code to the uncached value in response to detect- 15
ing that the web content has been loaded at the client
system; and

determining that the web content has been cached by the

client system, based on determining that the client code
is distinct from the uncached value. 20

#* #* #* #* #*

